·临床研究·

定量动态增强磁共振成像预测乳腺癌分子亚型的价值

徐婷婷, 张 峰, 张雪丽, 万丽娣, 华 婷, 汤光宇

(同济大学附属第十人民医院放射科,上海 200072)

【摘要】目的 研究乳腺癌动态增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)定量参数与其分子分型的相关性。方法 回顾性分析经手术病理证实102例不同分子亚型乳腺癌DCE-MRI定量参数,包括容量转移常数(Ktrans)、速率常数(Kep)和血管外细胞外间隙容积比(Ve)。记录瘤体免疫组织化学的雌激素受体(ER)、孕激素受体(PR)、人类表皮生长因子受体-2(HER-2)及Ki67的表达情况,比较不同分子分型乳腺癌DCE-MRI定量参数的差异,分析生物学预后因子表达与DCE-MRI定参数的相关性。结果 不同分子亚型乳腺癌的DCE-MRI定量参数(KtransKepVe)差异没有统计学意义(H=5.416,P=0.175;H=4.926,P=0.177;H=4.203,P=0.240);ER、PR阴性组的KtransKep值高于ER、PR阳性组;HER2阳性组的Kep值高于HER2阴性组(P<0.05),但二组间的Ktrans值、Ve值及ADC值差异均无统计学意义(P>0.05);Ki67高表达组的KtransKep值均高于Ki67低表达组。结论 乳腺癌DCE-MRI定量参数不能预测乳腺癌分子亚型,但部分定量参数与预后因子(ER、PR、HER2、Ki67)表达有相关性;KtransKep值可以反映乳腺癌的生物学行为,有助于评估乳腺癌预后。

【关键词】动态增强磁共振成像; 预后因子; 定量参数

乳腺癌在分子水平上呈现出高度的异质性,不同亚型乳腺癌表现出不同的生物学行为,预后差异较大[1-3]。2011年,第12届St. Gallen国际乳腺癌会议[4]依据雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)、人表皮生长因子(human epidermal growth factor receptor, C-erbR-2)、细胞增殖抗原标记物Ki67表达情况,将乳腺癌分为4个分子亚型: Luminal A型、Luminal B型、HER2过表达型及三阴性乳腺癌(triple negative breast cancer, TNBC),各亚型的乳腺癌临床特征及预后均不相同。

动态增强磁共振成像(dynamical contrast enhancement MRI, DCE-MRI)是一种具有高敏感性和较高特异性的乳腺癌检查技术,能够量化肿瘤血管内皮通透性及肿瘤血流量[5-7]。本研究旨在探讨DCE-MRI定量参数是否能预测乳腺癌各分子亚型及病理预后因子的相关性。

1 资料与方法

1.1 一般资料

回顾性收集同济大学附属第十人民医院于2014年10月至2016年11月经手术病理证实为乳腺癌患者102例,全部为女性,年龄为30~81岁,平均(50.46±11.53)岁。其中浸润性导管癌84例、导管原位癌10例、黏液癌3例、浸润性小叶癌3例、髓样癌1例、乳头状癌1例。纳入标准: (1) 术前1周内行定量DCE-MR扫描;(2) 手术病理证实为乳腺癌;(3) 术后经免疫组织化学检测并获得相应结果。

1.2 检查方法

采用3.0T超导MR扫描(Verio,西门子公司),梯度场强45mT/m,梯度切换率200T/m/s,专用八通道双侧乳房相控线圈。患者俯卧位,双乳置于乳腺相控阵表面线圈内。扫描序列为: (1) 横轴位T2WI: TR/TE为4300ms/61ms,FOV为159mm×340mm,矩阵为320×320,层厚为4.0mm。横轴位T1WI: TR/TE为6.0ms/2.5ms,FOV为340mm×340mm,矩阵为320×320;层厚为4.0mm。DWI: TR/TE为7500ms/81ms; FOV为159mm×340mm,矩阵为220×220;层厚为5.0mm;b值分别取50、400、1000s/mm-2。(2) T1增强前多翻转角扫描: TR/TE为5.0ms/1.7ms,FOV为340mm,矩阵为224×224;层厚为1.0mm,翻转角为5°、15°。(3) T1 动态增强扫描: 采用容积插入法屏气扫描序列(T1 weighted volumetric interpolated breath hold examination, 3D VIBE)扫描,在轴位上采集T1连续强化序列(TR/TE为5.0ms/1.7ms;FOV为 340mm,矩阵为224×224;层厚为1.0mm,共35个时相)。经肘静脉将对比剂注入(钆喷酸葡胺注射液,0.47g/ml,北陆药业股份有限公司),0.2ml/kg,速率4ml/s,注射完毕后追加50ml生理盐水,以同样流速注射。(4) 延迟期扫描: 采用脂肪抑制T1轴位扫描,TR/TE为8.8ms/4.3ms,FOV为340mm×340mm,层厚为1.0mm。

1.3 图像测量与评价

所有图像均由2名乳腺影像高年资医师在未知病理结果的情况下分别评阅,判断不一致时经讨论达成一致。在病灶最大层面及其上、下各一层面选取肿块实质成分作为感兴趣区进行测量,避开坏死组织、空洞及血管等,参数取3个层面平均值作为最终值,依据ADC图测定病灶ADC值。利用工作站Tissue 4D软件进行定量DCE-MRI数据后处理。时间-信号强化曲线(time-signal intensity curve, TIC)分为3型[8]: Ⅰ 型为缓慢上升型,Ⅱ 型为平台型,Ⅲ 型为廓清型。DCE-MRI的定量参数总共包括[9]: (1) 容 量转移常数(Ktrans);(2) 速率常数(Kep);(3) 血 管外细胞外间隙容积比(Ve)。三者关系如下: Kep=Ktrans/Ve。经处理后形成伪彩图,见图1~4。

图1 Luminal B型 乳腺癌的DCE-MRI灌注参数图
Fig.1 DCE-MRI perfusion parameters image of Luminal B breast cancer
患者,女,58岁,右乳浸润性导管癌Ⅱ级,ER、PR、HER-2表达均阳性,Ki67为10%;Ktrans=0.481/min,Kep=0.643/min,Ve=0.746

图2 HER-2过表达型乳腺癌的DCE-MRI灌注参数图
Fig.2 DCE-MRI perfusion parameters image of HER-2+ breast cancer
患者,女,64岁,左乳浸润性导管癌Ⅱ级,ER、PR表达均阴性,HER-2表达阳性,Ki67为60%;Ktrans=1.341/min,Kep=2.090/min,Ve=0.645

图3 Luminal A型 乳腺癌的DCE-MRI灌注参数图
Fig.3 DCE-MRI perfusion parameters image of Luminal A breast cancer
患者,女,47岁,左乳浸润性导管癌Ⅱ级,ER表达阳性、PR及HER-2表达阴性,Ki67为12%;Ktrans=0.168/min,Kep=0.219/min,Ve=0.864

图4 三阴性型乳腺癌的DCE-MRI灌注参数图
Fig.4 DCE-MRI perfusion parameters image of triple negative breast cancer
患者,女,63岁,右乳浸润性导管癌Ⅱ级,ER、PR、HER-2表达均为阴性;Ktrans=3.188/min,Kep=4.965/min,Ve=0.651

1.4 免疫组化检查及乳腺癌分子分型

标本经甲醛固定、石蜡包埋,按常规免疫组化SP法作ER、PR、HER-2、Ki67检测。ER、PR染色后阳性细胞>10%定为受体阳性(10%~25%为“+”、25%-75%为“++”、>75%为“+++”),<10%的定义为受体阴性;HER-2定位于细胞膜,染色结果分为阴性(-)、弱阳性(+)、阳性(++)、强阳性(+++)。其中(-)和(+)为HER-2表达阴性,(++)和(+++)为HER-2表达阳性。Ki67定位于细胞核,阳性细胞≤14%为“-”,阳性细胞>14%为“+”。依据依据2011年第12届St. Gallen国际乳腺癌会议(21709140)对乳腺癌分子分型: Luminal A 型(ER阳性或PR阳性、HER-2阴性、Ki67≤14%,Luminal B(HER-2+)型(ER阳性或PR阳性、HER2阳性)或者Luminal B(HER-2-)(ER阳性或PR阳性、HER-2阴性、Ki67≥14%),HER-2过表达型(ER和PR均阴性,HER-2阳性),三阴型(ER、PR、HER-2均阴性)。

1.5 统计学处理

使用SPSS 20.0统计软件进行统计分析。DCE-MRI定量参数和ADC值用 ±s表示。不同分子分型乳腺癌患者的定量参数比较采用Kruskal-Wallis检验。各受体在不同表达状态下的DCE-MRI定量增强参数比较采用t检验。P<0.05为差异有统计学意义。

2 结 果

2.1 各分子分型乳腺癌DCE-MRI定量参数

102例乳腺癌分子分型包括: Luminal A型7例、Luminal B型70例、HER2过表达型21例、TNBC 4例。四种分子亚型乳腺癌的DCE-MRI定量参数(KtransKepVe)差异无统计学意义(H=5.416,P=0.175;H=4.926,P=0.177;H=4.203,P=0.240),见表1。Luminal A、B型的ADC值明显高于HER2过表达型及TNBC,差异有统计学意义(H=10.161,P=0.017)。

表1 不同分子亚型乳腺癌的DCE-MRI定量参数及ADC值结果

Tab.1 Comparison of quantitative DCE-MRI parameters and ADC values between different subtypes of breast cancer

乳腺癌分子亚型Ktrans/(min-1)Kep/(min-1)VeADC(×10-3)/(mm2·s-1)LuminalA0.969±0.7402.457±2.1410.496±0.2211.176±0.186LuminalB1.018±0.7302.015±0.1450.559±0.1810.921±0.244HER-2+1.374±0.7582.901±1.7900.525±0.1440.873±0.127TNBC1.500±0.5712.258±1.9410.671±0.0630.874±0.095H值5.4164.9264.20310.161P值0.1750.1770.2400.017

2.2 受体表达状态与DCE-MRI定量参数相关性

不同受体表达与DCE-MRI定量参数相关性见表2。在本研究的102例乳腺癌中,ER阴性组26例,ER阳性组76例;PR阴性组34例,PR阳性组68例;HER-2阳性组63例,HER-2阳性组39例;Ki67高表达组30例,Ki67低表达组72例。ER阴性组的Ktrans值、Kep值均高于阳性组,差异有统计学意义(t=2.484,P=0.015;t=2.066,P=0.041);PR阴性组的Ktrans值、Kep值也明显高于阳性组(t=2.226,P=0.028;t=2.217,P=0.029);ER阴性组及阳性组间的Ve值、ADC值差异无统计学意义(P>0.05);PR阴性组及阳性组间的Ve值、ADC值差异亦均无统计学意义(P>0.05)。HER-2阳性组的Kep值高于HER-2阴性组,差异有统计学意义(t=1.995,P=0.049);HER-2阳性组及阴性组的Ktrans值、Ve值及ADC值差异均无统计学意义(t=1.744,P=0.084;t=1.444,P=0.125;t=0.309,P=0.758)。Ki67高表达组的KtransKep值均高于Ki67低表达组,且差异有统计学意义(t=2.799,P=0.006;t=2.220,P=0.029),ADC值显著低于Ki67低表达组(t=6.027,P<0.001)。

表2 乳腺癌不同受体表达下定量DCE-MRI定量参数及ADC值结果

Tab.2 Comparison of quantitative DCE-MRI parameters and ADC values under different receptors expression of breast cancer

变量Ktrans/(min-1)Kep/(min-1)VeADC(×10-3)/(mm2·s-1)ER阳性1.031±0.7292.076±1.5500.556±0.1810.942±0.251ER阴性1.440±0.7092.811±1.6180.533±0.1570.883±0.148t值2.4842.0660.5701.130P值0.0150.0410.5700.261PR阳性0.992±0.7382.000±1.5080.555±0.1830.941±0.254PR阴性1.332±0.7062.730±1.6810.540±0.1590.899±0.173t值2.2262.2170.4310.855P值0.0280.0290.6680.395HER-2阳性1.267±0.8282.639±1.7380.518±0.1450.935±0.259HER-2阴性1.006±0.6701.999±1.4650.569±0.1880.921±0.212t值1.7441.9951.4440.309P值0.0840.0490.1250.758低Ki67(Ki67≤14%)0.787±0.6371.699±1.3620.529±0.1811.117±0.297高Ki67(Ki67>14%)1.209±0.6992.463±1.5550.565±0.1660.852±0.142t值2.7992.2200.9526.027P值0.0060.0290.3430.000

3 讨 论

3.1 DCE-MRI定量参数、ADC值与乳腺癌分子亚型的相关性

本研究显示,不同亚型乳腺癌的DCE-MRI定量参数(KtransKepVe)差异没有统计学意义。与Li等报道的结果不同。他们发现三阴性乳腺癌的Kep值高于其他亚型乳腺癌,Ve值低于其他亚型乳腺癌[10]。ER阴性乳腺癌及三阴性乳腺癌具有高Ktrans值、高Kep值及低Ve[11-12]。三阴性乳腺癌肿瘤血管迂曲、扩张、血管壁通透性增加,与其他亚型乳腺癌相比,表现出高渗透性[13]。因此,三阴性乳腺癌表现为高Ktrans值、高Kep值;三阴性乳腺癌血管外细胞外间隙减小,所以表现为低Ve值。但本研究发现,HER-2过表达型及TNBC型ADC值明显低于Luminal A型、Luminal B型。细胞增殖越旺盛,ADC值越低。TNBC侵袭性强,细胞增殖旺盛,组织的细胞密度大,因此较其他亚型乳腺癌表现出低ADC值。

3.2 DCE-MRI定量参数及ADC值与乳腺癌预后因子的相关性

正常乳腺上皮细胞核上有ER、PR表达,ER阳性表达能下调血管内皮生长因子水平进而抑制肿瘤血管的生成[14-15];PR阳性表达能够促进雌激素对ER的反应。本研究结果显示,ER、PR阴性组乳腺癌的Ktrans值及Kep值高于ER、PR阳性组,且差异具有统计学意义,提示ER、PR阴性的乳腺癌新生血管比阳性者更丰富,从而更具有转移倾向。Koo等[11]发现,ER阴性乳腺癌表现出高Ktrans值、Kep值及低Ve值,与本研究结果一致。

HER-2在正常乳腺肿瘤中为低表达,具有调节细胞生长、分化以及增殖的功能[16]。本研究显示,HER-2阳性组的Kep值明显高于HER-2阴性组。有报道[17]表明,HER-2阳性乳腺癌的肿瘤血流量比HER-2阴性组高。但HER2阳性组与阴性组间的Ktrans值、Ve值及ADC值差异并无统计学意义,与Koo等[11]的结果类似。他们认为HER-2不同表达状态与各定量参数间无明显相关性,原因可能在于HER-2 的蛋白质表达与基因扩增不一致。

Ki67是细胞增殖活性标志物,可以对肿瘤细胞的增殖活性、肿瘤的侵袭性以及肿瘤的预后进行评估[18-19]。Ki67表达与细胞增殖有关,表达程度越高,反映细胞增殖程度高[20]。本研究显示,Ki67高表达组Ktrans值及Kep值明显高于Ki67低表达组,且ADC值低于Ki67低表达组,这与Kim等[21]研究结果一致。高Ki67表达乳腺癌,肿瘤的微血管密度大、血管的成熟度低,故Ktrans值及Kep值较高。

综上所述,乳腺癌DCE-MRI定量参数(KtransKepVe)不能对不同分子分型乳腺癌进行鉴别,但乳腺癌DCE-MRI定量参数与预后因子(ER、PR、HER-2、Ki67)间具有相关性,KtransKep值可以反应乳腺癌的生物学行为,有助于乳腺癌预后评估。不同分子分型乳腺癌间的DCE-MRI定量参数差异无统计学意义,可能与本研究中4组分子分型乳腺癌病例分布偏倚明显有关,导致实验结果偏差,有待于今后研究中进一步扩大样本数量验证。

【参考文献】

[1] DE RONDE J J, HANNEMANN J, HALFWERK H, et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response[J]. Breast Cancer Res Treat, 2010,119(1): 119-126.

[2] DESMEDT C, HAIBE-KAINS B, WIRAPATI P, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes[J]. Clin Cancer Res, 2008,14(16): 5158-5165.

[3] ROUZIER R, PEROU C M, SYMMANS W F, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy[J]. Clin Cancer Res, 2005,11(16): 5678-5685.

[4] GOLDHIRSCH A, WOOD W C, COATES A S, et al. Strategies for subtypes — dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011[J]. Ann Oncol, 2011,22(8): 1736-1747.

[5] TURNBULL LW. Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer[J]. NMR Biomed, 2009,22(1): 28-39.

[6] SCHABEL M C, MORRELL G R, OH K Y, et al. Pharmacokinetic mapping for lesion classification in dynamic breast MRI[J]. J Magn Reson Imaging, 2010,31(6): 1371-1378.

[7] FLUCKIGER J U, SCHABEL M C, DIBELLA E V. The effect of temporal sampling on quantitative pharmacokinetic and three-time-point analysis of breast DCE-MRI[J]. Magn Reson Imaging, 2012,30(7): 934-943.

[8] KUHL C K, MIELCARECK P, KLASCHIK S, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?[J]. Radiology, 1999,211(1): 101-110.

[9] ZHU J, ZHANG L, WU X, et al. Reduction of longitudinal vertebral blood perfusion and its likely causes: a quantitative dynamic contrast-enhanced MR imaging study of a rat osteoporosis model[J]. Radiology, 2017,282(2): 369-380.

[10] LI S P, PADHANI A R, TAYLOR N J, et al. Vascular characterisation of triple negative breast carcinomas using dynamic MRI[J]. Eur Radiol, 2011,21(7): 1364-1373.

[11] KOO H R, CHO N, SONG I C, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers[J]. J Magn Reson Imaging, 2012,36(1): 145-151.

[12] LINDERHOLM B K, HELLBORG H, JOHANSSON U, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer[J]. Ann Oncol, 2009,20(10): 1639-1646.

[13] AN Y S, KANG D K, JUNG Y S, et al. Tumor metabolism and perfusion ratio assessed by 18F-FDG PET/CT and DCE-MRI in breast cancer patients: Correlation with tumor subtype and histologic prognostic factors[J]. Eur J Radiol, 2015,84(7): 1365-1370.

[14] LI S P, MAKRIS A, BERESFORD M J, et al. Use of dynamic contrast-enhanced MR imaging to predict survival in patients with primary breast cancer undergoing neoadjuvant chemotherapy[J]. Radiology, 2011,260(1): 68-78.

[15] ALI S H, O′DONNELL A L, BALU D, et al. Estrogen receptor-alpha in the inhibition of cancer growth and angiogenesis[J]. Cancer Res, 2000,60(24): 7094-7098.

[16] SEO B K, PISANO E D, KUZIMAK C M, et al. Correlation of HER-2/neu overexpression with mammography and age distribution in primary breast carcinomas[J]. Acad Radiol, 2006,13(10): 1211-1218.

[17] MAKKAT S, LUYPAERT R, STADNIK T, et al. Deconvolution-based dynamic contrast-enhanced MR imaging of breast tumors: correlation of tumor blood flow with human epidermal growth factor receptor 2 status and clinicopathologic findings — preliminary results[J]. Radiology, 2008,249(2): 471-482.

[18] JONES R L, SALTER J, A′HERN R, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer[J]. Breast Cancer Res Treat, 2009,116(1): 53-68.

[19] DOWSETT M, SMITH I E, EBBS S R, et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer[J]. J Natl Cancer Inst, 2007,99(2): 167-170.

[20] SHIN J K, KIM J Y. Dynamic contrast-enhanced and diffusion-weighted MRI of estrogen receptor-positive invasive breast cancers: associations between quantitative MR parameters and Ki67 proliferation status[J]. J Magn Reson Imaging, 2017,45(1): 94-102.

[21] KIM J Y, KIM S H, KIM Y J, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers?[J]. Magn Reson Imaging, 2015,33(1): 72-80.

Association between quantitative parameters of DCE-MRI and molecular subtypes of breast cancer

XU Ting-ting, ZHANG Feng, ZHANG Xue-li, WAN Li-di, HUA Ting, TANG Guang-yu

(Dept. of Radiology, Tenth People’s Hospital, Tongji University, Shanghai 200072, China)

【Abstract】Objective To investigate the association between quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and molecular subtypes of breast cancers. Methods The DCE-MRI findings were retrospectively analyzed in 102 patients with pathologically confirmed breast cancer. The volume transfer constant (Ktrans), rate constant (Kep) and volume of EES per unit volume of tissue (Ve) value were calculated. The immunohistochemistry results of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2) and Ki67 were reviewed. The quantitative parameters of DCE-MRI were compared among patients with different immunohistochemical subtype. Results There were no statistically significances in quantitative parameters Ktrans, Kep and Ve among patients with different immunohistochemical subtype(H=5.416,P=0.175;H=4.926,P=0.177;H=4.203,P=0.240, respectively). Ktrans and Kep values were higher in tumors with ER-negative and PR-negative than those with ER-positive and PR-positive. Kepvalue was higher in tumors with HER-2-positive than that with HER-2-negative. There was no significant difference in Ktrans and Ve values between HER-2 positive and HER-2 negative tumors (P>0.05). Ktrans and Kep values in tumors with high Ki67 expression were higher than those with low Ki67 expression. Conclusion Different subtypes of breast cancer can not be predicted by using DCE-MRI quantitative parameters. However, there is some correlation between DCE-MRI quantitative parameters and the prognostic factors. Ktrans and Kep values may reflect the biological behavior, which is related to the prognosis of breast cancer.

【Key words】dynamic contrast-enhanced magnetic resonance imaging; prognostic factors; quantitative parameters

doi:10.16118/j.1008-0392.2017.03.010

收稿日期:2017-01-22

作者简介:徐婷婷(1987—),女,住院医师,硕士.E-mail: 754732080@qq.com

通信作者:汤光宇.E-mail: tgy17@126.com

【中图分类号】R 445.2

【文献标志码】A

【文章编号】1008-0392(2017)03-0050-06