·基础研究·

MicroRNA-195-5p调节Bmpr1α表达对骨髓间充质干细胞成脂分化的影响

潘 欣1,2, 曾思良3, 梁兴伦1, 嵇承栋1, 刘晓东1, 廖万清4

(1. 同济大学附属杨浦医院中心实验室,上海 200090; 2. 上海俊维寓医医院有限公司检验科,上海 200433; 3. 上海师范大学天华学院康复治疗学系,上海 201815; 4. 第二军医大学附属长征医院皮肤科,上海 200003)

【摘要】目的 探讨miR-195-5p在补肾方含药血清干预大鼠原代骨髓间充质干细胞(bone mesenchymal stem cell, BMSC)中的表达及其对成脂分化的影响。方法 体外贴壁法原代培养的大鼠BMSC细胞经流式细胞术、CD44和CD34免疫荧光染色鉴定后,与椎间盘软骨细胞和成骨细胞一起采用荧光定量RT-PCR方法检测细胞中rno-miR-195-5p的表达情况;采用荧光素酶报告基因实验验证骨形态发生蛋白受体-1α(Bmpr1α)是否为rno-miR-195-5p的靶基因,采用Western印迹法和油红O染色检测rno-miR-195-5p对Bmpr1α表达和BMSC成脂分化的影响。结果 流式细胞术与免疫荧光分析显示所培养细胞具备BMSC特征。rno-miR-195-5p在补肾方含药血清干预的原代BMSC中表达明显升高(P<0.01),且在分化完成的软骨细胞和成骨细胞中高表达。双荧光素酶报告实验与Western印迹法证实Bmpr1α是rno-miR-195-5p的靶基因。转染rno-miR-195-5p mimics上调BMSC中rno-miR-195-5p可抑制Bmpr1α的表达(P<0.05),降低成脂分化能力;而转染rno-miR-195-5p inhibitor可显著增加BMSC中Bmpr1α的表达(P<0.01),增强成脂分化能力。结论 补肾方含药血清干预BMSC上调rno-miR-195-5p,通过降低其靶基因Bmpr1α的表达而降低BMSC的成脂分化,改善骨质疏松症状。

【关键词】骨形态发生蛋白受体-1α; rno-miR-195-5p; 骨髓间充质干细胞; 骨质疏松

中医药治疗骨质疏松(osteoporosis, OP)的历史源远流长。为从分子水平评价用熟地黄、菟丝子、牛膝、龟板胶、鹿角胶、山药、山茱萸、枸杞子、淫羊藿和女贞子等10味中药配伍的补肾方治疗OP的机制,本课题组用补肾方含药血清分别处理大鼠原代软骨细胞[1]和成骨细胞[2],经miRNA芯片筛查,分别获得了两套差异性表达的miRNA,其中大鼠microRNA-195-5p(rno-miR-195-5p)在这两类细胞中均呈现高表达;再采用TargetScan、miRanda和miRBase等生物信息学在线软件对大鼠rno-miR-195-5p靶基因进行预测,发现骨形态发生蛋白受体-1α(bone morphogenetic protein receptor type 1A, Bmpr1α)可能为其靶基因之一。Bmpr1α又称激活素受体样激酶3(activin receptor-like kinase-3, Alk-3),在心脏[3]、胸腺[4]、肠道[5]、骨骼[6]等多种脏器和组织中表达。Bmpr1α通过与骨形态发生蛋白(bone morphogenetic protein, BMP)相互作用完成细胞内外的信号转导进而实现其生物学功能。本研究探讨大鼠rno-miR-195-5p对Bmpr1α蛋白表达的影响及其在调控大鼠骨髓间充质干细胞(bone mesenchymal stem cell, BMSC)成脂分化中的作用、相关机制。

1 材料与方法

1.1 实验动物

1月龄SD清洁级大鼠20只,由上海第二军医大学动物实验中心提供,合格证号: SCXK(沪)2012-0003。按啮齿类动物标准饲料饲养于第二军医大学动物实验中心清洁级鼠房,分笼饲养。

1.2 主要试剂与仪器

补肾方含药血清、0.9% NaCl含药血清(以下简称对照血清)和293工具细胞为同济大学附属杨浦医院中心实验室保存。低糖DMEM、胎牛血清、胰酶购自美国Corning公司;成脂诱导分化培养基购自美国Gibco公司;TRIzol、无RNA酶的DNA酶Ⅰ、油红O、DAPI购自美国Sigma公司;荧光定量快速聚合酶链反应混合试剂盒(2×)购自美国Roche公司;BMSC表面标志抗体检测试剂盒购自美国Biolegend公司;CD34小鼠单抗、CD44兔抗人多抗、Alexa Fluor 488的兔抗鼠二抗和Alexa Fluor 594羊抗兔二抗购自美国Abcam公司;双荧光素酶报告基因的载体psiCHECK-2、荧光素酶检测试剂盒购自美国Promega公司;LipofectamineTM3000试剂盒购自美国Thermo公司;StepOnePlus荧光定量PCR仪购自美国ABI公司;Observer Z1全电动倒置荧光显微镜购自德国ZEISS公司;ChemiDoc MP凝胶成像系统购自美国Bio-Rad公司;FACS Calibur流式细胞仪购自美国BD公司。

1.3 方法

1.3.1 大鼠原代BMSC培养 1月龄SD大鼠拉断颈椎处死,无菌取出股骨,剔净周围软组织。剪除两端骨骺,用 5ml 一次性注射器吸取 1ml 低糖DMEM,冲洗出骨髓腔中的骨髓细胞,吹打混匀后,过100μm孔径的一次性细胞滤网。在细胞滤液中补充含10%胎牛血清、100U/ml青霉素、0.1g/L链霉素的低糖DMEM完全培养液,置于37℃、5% CO2的培养箱中。24h后换液,以后2d换液1次。

1.3.2 BMSC鉴定 用胰酶将原代生长7d状态良好的BMSC消化成单细胞,PBS洗2次后,进行流式细胞术检测。同时,将原代BMSC接种于玻璃底细胞培养皿,培养7d后,弃细胞培养液,PBS洗3次,4%多聚甲醛室温固定20min,继而透化、封闭,用PBS按1∶500分别稀释CD34小鼠单抗和CD44兔抗人多抗,两种一抗混匀后浸没细胞,4℃过夜。室温放置2h后,PBS洗。在1ml PBS中加入Alexa Fluor 488兔抗鼠二抗和Alexa Fluor 594羊抗兔二抗各1μl,在 1ml 两种二抗混合液中加入1mg/ml 的DAPI 1μl,混匀后浸没细胞,室温孵育 1h,PBS洗涤,过双蒸水,晾干后装片镜检。

1.3.3 荧光素酶报告基因验证靶基因 TargetScan靶基因预测软件检测结果提示: Bmpr1α mRNA的3′-非翻译区(3′-untranslated region, 3′-UTR)的1941~1947位点(GCTGCTA)是rno-miR-195-5p的可能结合位点,体外合成含该位点的DNA片段及含该位点缺失突变体的DNA片段,克隆至含双荧光素酶报告基因的载体psiCHECK-2中。其中psiCHECK-2-Bmpr1α-3′UTR(WT)载体含Bmpr1α基因野生型3′-UTR片段,以下简称pWT;psiCHECK-2-Bmpr1α-3′UTR(MU)含Bmpr1α基因突变型3′-UTR片段,以下简称pMU。pWT与pMU分别与miRNA的mimic或inhibitor共同转染至293工具细胞中,培养48h后,采用荧光素酶检测试剂盒检测荧光素酶活性。

1.3.4 合成DNA序列 人工设计合成的DNA序列见表1,同时将无关mimic和inhibitor设置为阴性对照(negative control, NC)组。

表1 研究所用核酸序列

Tab.1 Nucleotide sequences required of molecules in the study

目的基因序列名称序列(5'→3')大鼠miR-195-5pmimicUAGCAGCACAGAAAUAUUGGCinhibitorGCCAAUAUUUCUGUGCUGCUA上游引物ACGATAGCAGCACAGAAAT下游引物GTGCAGGGTCCGAGGT逆转录引物GTCGTATCCAGTGCAGGGTCCGAG-GTATTCGCACTGGATACGACGCCAAT对照(NC)mimicUCACAACCUCCUAGAAAGAGUA-GAinhibitorUCACAACCUCCUAGAAAGAGUA-GAU6上游引物GCTTCGGCAGCACATATACTA-AAAT下游引物CGCTTCACGAATTTGCGTGTCAT大鼠Bmpr1α上游引物ATTTATGGCACGCAAGGC下游引物TGGTGTTCAAGGGTATGTCAAC大鼠GAPDH上游引物CCCCAATGTATCCGTTGTG下游引物CTCAGTGTAGCCCAGGATGC

1.3.5 荧光定量RT-PCR 大鼠原代BMSC的含药血清干预、总RNA抽提、质检与数据采集分析依照参考文献[5]执行。含药血清干预的大鼠原代椎间盘软骨细胞与成骨细胞总RNA为本项目组保存。

1.3.6 细胞转染 大鼠原代BMSC培养至70%融合时,开始进行miRNA的mimic或inhibitor转染实验。按照LipofectamineTM3000试剂盒的说明书进行转染实验,并在转染48h后用于功能实验。

1.3.7 Western印迹 收获各转染与未转染的大鼠原代BMSC,依照参考文献[7]完成Western印迹操作,GAPDH蛋白作为内参。

1.3.8 油红O染色 大鼠原代BMSC接种于玻璃底细胞培养皿,分组培养24h后,弃悬浮细胞,各组均用间充质干细胞成脂诱导分化完全培养基诱导 3d,对照组换正常低糖DMEM完全培养液继续培养,其他各组转染miRNA的mimic或inhibitor,24h后换正常低糖DMEM完全培养液继续培养。各组培养12d后,吸去细胞培养液,PBS洗3次,4%多聚甲醛室温固定10min,蒸馏水洗3次,油红O染色,在显微镜下观察。

1.4 统计学处理

使用SAS 4.0软件进行统计分析,数据以±s表示,两组比较采用配对t检验。P<0.05为差异有统计学意义。

2 结 果

2.1 大鼠原代BMSC鉴定

流式细胞仪检测大鼠原代BMSC结果显示,细胞表面可表达CD90、CD73、CD44、CD105,检测细胞的阳性率高于95%;不表达CD34、CD19、CD45、CD11b,见图1。

图1 流式细胞术鉴定大鼠原代BMSC的表面特征
Fig.1 Characterization of bone mesenchymal stem cells of SD rats via flow cytometry

大鼠原代BMSC免疫荧光法染色结果显示,胞质中CD34呈现绿色荧光,不在细胞膜表面表达;CD44在包膜与胞质中呈现红色荧光。提示所培养细胞具备BMSC细胞表面特征,见图2。

图2 大鼠原代BMSC免疫荧光鉴定(标尺: 20μm)
Fig.2 Identification of bone mesenchymal stem cells of SD rats by immunofluorescent staining
A: BMSC细胞核用DAPI染色,呈蓝紫色荧光;B: CD34呈绿色荧光;C: CD44呈红色荧光;D: 各荧光通道融合

2.2 荧光RT-PCR检测rno-miR-195-5p在不同原代细胞中的表达情况

RT-PCR检测结果显示: 大鼠rno-miR-195-5p在补肾方含药血清处理BMSC 3d中的转录表达是1d的3.61倍(t=14.12,P=0.005),大鼠rno-miR-195-5p在补肾方含药血清处理椎间盘软骨细胞3d中的转录表达是1d的14.43倍(t=29.03,P=0.0012),rno-miR-195-5p在补肾方含药血清处理成骨细胞6d中的转录表达是1d的5.37倍(t=13.49,P=0.0055)。提示大鼠rno-miR-195-5p在补肾方处理的原代BMSC中表达明显升高,在椎间盘软骨细胞和成骨细胞中的变化趋势与miRNA芯片数据基本吻合。

2.3 荧光素酶活性检测

荧光素酶活性检测结果显示: 大鼠rno-miR-195-5p mimic与野生型载体共转染后,海肾荧光素酶活性/萤火虫荧光素酶活性(the ratio of renilla to firefly luciferase activity, Rluc/Fluc)显著下降,是NC mimic与野生型载体共转染的0.71倍(t=21.07,P=0.0022),而rno-miR-195-5p mimic和缺失突变型载体共转染的荧光素酶活性与NC mimic和缺失突变型载体共转染组相比未出现显著降低。另外在293细胞中,大鼠rno-miR-195-5p inhibitor与野生型载体共转染之后,Rluc/Fluc明显升高,是NC inhibitor与野生型载体共转染的1.30倍(t=9.897,P=0.0101),见图3。提示rno-miR-195-5p存在靶向调控Bmpr1α表达的现象。

图3 荧光素酶活性检测
Fig.3 Dual luciferase activities assays
与NC组相比,*P<0.05,**P<0.01

2.4 rno-miR-195-5p对大鼠原代BMSC中Bmpr1α表达的影响

用rno-miR-195-5p mimic转染大鼠原代BMSC后,荧光定量RT-PCR显示胞内rno-miR-195-5p过表达明显提高,是转染NC mimic的22.34倍(t=17.46,P=0.0033),见图4A;同时胞内Bmpr1α的转录表达显著降低,是转染NC mimic的0.62倍(t=4.498,P=0.0460),见图4B。用rno-miR-195-5p inhibitor转染大鼠原代BMSC细胞,胞内rno-miR-195-5p表达明显降低,是转染NC inhibitor的0.29倍(t=10.87,P=0.0084),见图4C;同时胞内Bmpr1α的转录表达显著升高,是转染NC inhibitor的2.50倍(t=17.44,P=0.0033),见图4D。Western印迹法结果同样显示大鼠原代BMSC转染rno-miR-195-5p mimic可显著抑制Bmpr1α的表达,而转染rno-miR-195-5p inhibitor可增加Bmpr1α的表达,见图4E。提示rno-miR-195-5p与Bmpr1α基因存在显著的负调控。

图4 rno-miR-195-5p对大鼠原代BMSC中Bmpr1α表达的影响
Fig.4 Effect of rno-miR-195-5p transfection on Bmpr1α expression in primary bone mesenchymal stem cells of SD rats miRNA mimics转染大鼠BMSC细胞后,RT-PCR检测大鼠miR-195-5p(A)与Bmpr1α(B)mRNA表达水平;miRNA inhibitors转染大鼠BMSC细胞后,RT-PCR检测大鼠miR-195-5p(C)与Bmpr1α(D)mRNA表达水平;miRNA mimics与 inhibitors分别转染大鼠BMSC细胞,Western印迹法检测Bmpr1α蛋白的表达(E);与未转染组和NC组相比,*P<0.05,**P<0.01,***P<0.001

2.5 rno-miR-195-5p对大鼠原代BMSC成脂分化能力的影响

成脂分化结果显示: 转染rno-miR-195-5p mimic的成脂细胞明显减少,而转染rno-miR-195-5p inhibitor的成脂细胞较多,见图5。

图5 油红染色示大鼠原代BMSC转染或未转染
miRNA mimics或inhibitors成脂分化(标尺: 20μm)
Fig.5 Induction of adipogenic differentiation from primary bone mesenchymal stem cells of SD rats by miRNA mimics or inhibitors transfection
A: 未转染;B: 转染对照mimics;C: 转染rno-miR-195-5p mimics;D: 转染对照inhibitors;E: 转染rno-miR-195-5p inhibitors

3 讨 论

本研究采用携带Bmpr1α基因rno-miR-195-5p结合位点野生型或缺失突变型3′-UTR序列的psiCHECK-2载体分别与miRNA mimic与inhibitor共转染293细胞,双荧光素酶报告基因检测证实: rno-miR-195-5p mimic与野生型载体共转染后,Rluc/Fluc显著下降;而rno-miR-195-5p mimic与缺失突变型载体共转染后,Rluc/Fluc未出现显著变化;rno-miR-195-5p inhibitor与野生型载体共转染后,Rluc/Fluc明显升高。提示rno-miR-195-5p存在靶向调控Bmpr1α表达的现象。本研究曾尝试用原代BMSCs进行上述研究,然而,LipofectamineTM3000难以将较大的载体分子导入原代BMSC,却可将miRNA mimic与inhibitor等小分子导入原代BMSC。因此,本研究采用荧光定量RT-PCR和Western印迹法验证了rno-miR-195-5p过表达的mimic可明显降低BMSC胞内Bmpr1α的表达(P<0.05);低rno-miR-195-5p表达的inhibitor可显著升高BMSC胞内Bmpr1α的表达(P<0.01),提示rno-miR-195-5p与Bmpr1α基因存在显著的负调控。

人类的miR-195-5p定位于17号染色体短臂17p13.1[8],miR-195-5p属于miR-16/15/107/195/424/497家族,其特征是在成熟miRNA的5′端附近均有AGCAGC种子序列。在前列腺癌、乳腺癌、肺癌、肝细胞癌、结肠癌、膀胱癌、骨肉瘤、高级别骨髓增生异常综合征[8]及子宫内膜异位症[9]等多种肿瘤与疾病中常常低表达,miR-195-5p过表达可表现其抑制肿瘤细胞的增殖、侵袭和转移的抑癌功能[10]和降低微血管密度的作用[11]。此外,miR-195-5p在张应力诱导的骨形成中也呈低表达[12]。然而,miR-195-5p在先兆子痫孕妇滑膜肉瘤[13]、胃癌患者血液中高表达[14]。miR-195-5p在精神分裂症治疗耐受患者血液中的表达明显高于治疗响应者[15]。miR-195-5p在慢性轻度应激大鼠中脑皮层通道的腹侧被盖区高表达,参与精神病病理生理的血清素信号和脑源性神经营养因子水平的调节[16]

目前,有文献报道,miR-195-5p靶向基因主要有Delta样配体[8]、裸角质膜同源蛋白1[10]、CDK4[17]、CDK8[18]、E2F转录因子3和细胞周期素[19]、VEGF[20]、沉默信息调节因子1[21]、Fos相关抗原1[22]、PHD锌指蛋白[23]、葡萄糖转运蛋白[24]、BMP[25]。有研究[26]指出,miR-195-5p可作为机械敏感性基因靶向Wnt家族成员3A、成纤维细胞生长因子和Bmpr1α,在机械负荷诱导的成骨分化与骨形成中发挥作用。

成骨细胞分化是一个多步骤的过程。成骨诱导后,BMSC分化为增殖性前成骨细胞,产生大量丰富的细胞外基质(extracellular matrix, ECM),被ECM包围的成熟成骨细胞启动ECM固化,随后进行伴随羟基磷灰石沉积的矿化作用。在分化的终末环节,一小部分成骨细胞分化为骨细胞,大部分步入细胞凋亡。成骨细胞分化受BMP、FGF、PDGF、TGF-β等数种胞外生长因子调节。依据不同的生长因子、生物力学环境和分化阶段,激活数条不同的信号通路。成骨诱导主要受BMP信号通路调节,Bmpr1α是BMP信号通路的上游部分,其在成骨细胞分化中的具体作用还有待进一步深入探讨。有研究[27]认为,Bmpr1α与BMP-2/BMP- 4结合,依赖Smad和p38 MAPK两条信号通路,促进多潜能干细胞向脂肪细胞分化。本研究提示,rno-miR-195-5p通过调控Bmpr1α的升降,进而调控BMSC的成脂分化。推测补肾方含药血清通过提高rno-miR-195-5p在BMSC中的表达,降低Bmpr1α蛋白水平,进而减少与BMP2分子结合,从而减少BMSC向脂肪细胞方向的分化,发挥改善骨质疏松症状的功效。

【参考文献】

[1] 潘欣,梁兴伦,曾思良,等.补肾方含药血清干预大鼠椎间盘软骨细胞miRNA的差异表达[J].上海中医药杂志,2016,50(1): 65-69.

[2] 潘欣,曾思良,梁兴伦,等.大鼠成骨细胞微小RNAs的筛选研究[J].转化医学杂志,2017,6(2): 68-73.

[3] BRIGGS L E, PHELPS A L, BROWN E, et al. Expression of the BMP receptor Alk3 in the second heart field is essential for development of the dorsal mesenchymal protrusion and atrioventricular septation[J]. Circ Res, 2013,112(11): 1420-1432.

[4] KUCZMA M, KURCZEWSKA A, KRAJ P. Modulation of bone morphogenic protein signaling in T-cells for cancer immunotherapy[J]. J Immunotoxicol, 2014,11(4): 319-327.

[5] WANG W, SU Z, CHEN D, et al. Differential expressions of BMPR1α, ACTN4α and FABP7 in Hirschsprung disease[J]. Int J Clin Exp Pathol, 2014,7(5): 2312-2318.

[6] LIN S, SVOBODA K K, FENG J Q, et al. The biological function of type Ⅰ receptors of bone morphogenetic protein in bone[J]. Bone Res, 2016,4: 16005.

[7] PAN X, ZENG S, YU D, et al. Variable domain of the heavy chain of heavy-chain antibody of the Rv0733 antigen of mycobacterium tuberculosis panned and identified from a nonimmune llama VHH phage display library[J]. Int J Clin Exp Pathol, 2016,9(3): 2869-2878.

[8] XU F, ZHU Y, HE Q, et al. Identification of microRNA-regulated pathways using an integration of microRNA-mRNA microarray and bioinformatics analysis in CD34+cells of myelodysplastic syndromes[J]. Sci Rep, 2016,6: 32232.

[9] BRAZA-BOILS A, SALLOUM-ASFAR S, MARI-ALEXANDRE J, et al. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis[J]. Hum Reprod, 2015,30(10): 2292-2302.

[10] QU Q, CHU X, WANG P. MicroRNA-195-5p suppresses osteosarcoma cell proliferation and invasion by suppressing naked cuticle homolog 1[J]. Cell Biol Int, 2017,41(3): 287-295.

[11] WANG R, ZHAO N, LI S, et al. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42[J]. Hepatology, 2013,58(2): 642-653.

[12] CHANG M, LIN H, LUO M, et al. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells[J]. In Vitro Cell Dev Biol Anim, 2015,51(8): 797-807.

[13] FRICKE A, ULLRICH P V, HEINZ J, et al. Identification of a blood-borne miRNA signature of synovial sarcoma[J]. Mol Cancer, 2015,14: 151.

[14] HUANG Z, ZHU D, WU L, et al. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer[J]. Cancer Epidemiol Biomarkers Prev, 2017,26(2): 188-196.

[15] ALACAM H, AKGUN S, AKCA H, et al. miR-181b-5p, miR-195-5p and miR-301a-3p are related with treatment resistance in schizophrenia[J]. Psychiatry Res, 2016,245: 200-206.

[16] ZURAWEK D, KUSMIDER M, FARON-GORECKA A, et al. Reciprocal microRNA expression in mesocortical circuit and its interplay with serotonin transporter define resilient rats in the chronic mild stress[J]. Mol Neurobiol, 2016.doi: 10.1007/s12035-016-0107-9.

[17] LIN Y, WU J, CHEN H, et al. Cyclin-dependent kinase 4 is a novel target in micoRNA195-mediated cell cycle arrest in bladder cancer cells[J]. FEBS Lett, 2012,586(4): 442-447.

[18] LUO Q, ZHANG Z, DAI Z, et al. Tumor-suppressive microRNA-195-5p regulates cell growth and inhibits cell cycle by targeting cyclin dependent kinase 8 in colon cancer[J]. Am J Transl Res, 2016,8(5): 2088-2096.

[19] ZHANG Q Q, XU H, HUANG M B, et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion[J]. Neuro Oncol, 2012,14(3): 278-287.

[20] SANDRIM V C, DIAS M C, BOVOLATO A L, et al. Plasma from pre-eclamptic patients induces the expression of the anti-angiogenic miR-195-5p in endothelial cells[J]. J Cell Mol Med, 2016,20(6): 1198-1200.

[21] ZHU H, YANG Y, WANG Y, et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1[J]. Cardiovasc Res, 2011,92(1): 75-84.

[22] WU J, JI A, WANG X, et al. MicroRNA-195-5p, a new regulator of Fra-1, suppresses the migration and invasion of prostate cancer cells[J]. J Transl Med, 2015,13: 289.

[23] XU H, HU Y W, ZHAO J Y, et al. MicroRNA-195-5p acts as an anti-oncogene by targeting PHF19 in hepatocellular carcinoma[J]. Oncol Rep, 2015,34(1): 175-182.

[24] FEI X, QI M, WU B, et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression[J]. FEBS Lett, 2012,586(4): 392-397.

[25] GRUNHAGEN J, BHUSHAN R, DEGENKOLBE E, et al. MiR- 497~195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling[J]. J Bone Miner Res, 2015,30(5): 796-808.

[26] CHANG M, LIN H, FU H, et al. MicroRNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading[J]. J Cell Physiol, 2017. doi: 10.1002/jcp. 25856.

[27] 宋檀婧.BMP信号通路在多潜能干细胞向前脂肪细胞定向中作用及机制研究[D].上海: 复旦大学,2008.

MicroRNA-195-5p affects adipocyte differentiation in bone mesenchymal stem cells by regulating Bmpr1α gene expression

PAN Xin1,2ZENG Si-liang3LIANG Xing-lun1JI Cheng-dong1LIU Xiao-dong1LIAO Wan-qing4

(1. Central Laboratory, Yangpu Hospital, Tongji University, Shanghai 200090, China; 2. Dept. of Clinical Laboratory, Shanghai Junwei Fine Medical Club, Shanghai 200433, China; 3. Dept. of Rehabilitation Therapy, Tianhua College, Shanghai Normal University, Shanghai 201815, China; 4. Dept. of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China)

【Abstract】Objective To investigate the effect of rno-miR-195-5p on modulating adipocyte differentiation related to sensitivity for Bushen decoction-medicated serum of bone marrow mesenchymal stem cells (BMSCs) and its mechanism. Methods BMSCs were isolated and culturedin vitro by adherent culture method. The flow cytometric analysis and immunofluorescent staining were used to identify primarily cultured BMSCs in vitro. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed for verifying the expression of rno-miR-195-5p in primary BMSCs, intervertebral disc chondrocytes and osteoblasts. Bioinformatics was used for predicting target genes for rno-miR-195-5p. Dual-luciferase reporter assay system and Western blot were performed for verifying the target gene and detecting the expression of Bmpr1α. Oil red O staining was used to assess the differentiation of BMSCs to adipocytes by transfection with miRNA mimics or inhibitors. Results The adherent culture method was practicable to obtain a large number of primary rat BMSCs with typical BMSCs characteristics identified by flow cytometry and immunofluorescent staining. After comparing rno-miR-195-5p expression in Bushen decoction-containing serum culture with that from normal saline control culture,the results of RT-PCR showed that rno-miR-195-5p was markedly up-regulated (P<0.01) in BMSCs cultured with Bushen decoction-containing serum. Dual luciferase report assay and Western blotting confirmed that rno-miR-195-5p can affect 3′-UTR sequence in Bmpr1α gene. Bioinformatics result showed that Bmpr1α was the direct target gene for rno-miR-195-5p. Over-expression of rno-miR-195-5p in BMSCs significantly suppressed Bmpr1α expression (P<0.05), and significantly inhibited adipogenic differentiation. We also observed that inhibition of rno-miR-195-5p in BMSCs significantly up-regulated Bmpr1α (P<0.01), and enhanced adipogenic differentiation. Conclusion The expression of rno-miR-195-5p in rat BMSCs is up-regulated after Bushen decoction-containing serum intervention. rno-miR-195-5p can suppress adipogenic differentiation via regulating Bmpr1α, which may relieve the symptom of osteoporosis.

【Key words】bone morphogenetic protein receptor type 1A; rno-miR-195-5p; bone mesenchymal stem cell; osteoporosis

doi:10.16118/j.1008-0392.2017.03.001

收稿日期:2017-02-07

基金项目:国家“九七三”重点基础研究发展计划(2013CB531601);国家自然科学基金(30972633、81173312、81372015);上海市卫生和计划生育委员会科研项目(201640253);同济大学附属杨浦医院学科带头人攀登计划(YE2201608)

作者简介:潘 欣(1968—),女,副教授,博士.E-mail: xinpanpx@163.com

【中图分类号】R 34

【文献标志码】A

【文章编号】1008-0392(2017)03-0001-07