引用本文
  • 帅学倩,梅广,李莉,等.大学生抑郁筛查及预警系统的研究进展[J].同济大学学报(医学版),2020,41(5):666-671.    [点击复制]
  • SHUAI Xue-qian,MEI Guang,LI Li,et al.Progress on depression screening and early warning system for college students[J].同济大学学报(医学版),2020,41(5):666-671.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 31次   下载 23 本文二维码信息
码上扫一扫!
大学生抑郁筛查及预警系统的研究进展
帅学倩,梅广,李莉,吴珩,赵旭东
0
(同济大学医学院,上海200092;同济大学电子与信息工程学院控制科学与工程系,上海200092;同济大学附属同济医院心身医学科,上海200065;同济大学人文医学与行为科学教研室,)
摘要:
抑郁症是最常见的精神疾病之一。大学生处在重要人生阶段,多种因素使得他们成为抑郁症高发人群和自杀高风险人群。抑郁的早发现对于大学生的心理健康的维护有重要意义。传统的量表筛查存在滞后性、被动性和受限性等缺点。随着新媒体、人工智能、大数据等交叉学科技术的应用,通过数据挖掘、机器学习等大数据技术处理多来源的数据,构建大学生心理预警系统;或通过人工神经网络、知识图谱等人工智能技术分析构造抑郁症早期筛查模型,这两种方式有望提高筛查实效,变筛查为预警,尽早发现高危人群,实施心理援助,具有很好的发展前景。但同时,在未来工作中需要注重研究伦理与数据隐私。
关键词:  抑郁症  大学生  筛查  预警
DOI:10.16118/j.1008-0392.2020.05.021
投稿时间:2019-09-30
基金项目:国家自然科学基金面上项目(81771464)
Progress on depression screening and early warning system for college students
SHUAI Xue-qian,MEI Guang,LI Li,WU Heng,ZHAO Xu-dong
(Tongji University School of Medicine, Shanghai 200092, China;Dept. of Control Science and Engineering, School of Electronic and Information Engineering, Tongji University, Shanghai 200092, China;Dept. of Psychosomatic Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;Dept. of Humanistic Medicine and Behavioral Science, Sino-German Institute of Psychosomatic Medicine, Tongji University, Shanghai 200092, China)
Abstract:
Depression is one of the most common mental disorders. College students are at an important stage of life, and many factors make them at high risk of depression and even suicide. Early detection of depression is of great significance to mental health of college students. Traditional scale screening has some disadvantages such as hysteresis, passivity and restriction. With the application of new media, artificial intelligence, big data and other interdisciplinary technologies, the early warning system can be constructed by using the datamining and machine learning; and the early screening model for depression can be constructed by using artificial neural network, knowledge map and other artificial intelligence techniques. Through processing or analyzing multi-source data, these two methods are expected to improve the effectiveness of screening and turn screening into early warning, so that high-risk groups can be identified earlier and the psychological assistance can be provided timely, which has a good development prospect. Meanwhile, the research ethics and data privacy should be emphasized in the future work.
Key words:  depression  college students  screening  warning

您是第2295864位访问者
版权所有《同济大学学报(医学版)》编辑部
主管单位:教育部 主办单位:同济大学
地  址: 上海四平路1239号 邮编:200092 电话:021-65980705 E-mail: yxxb@tongji.edu.cn
本系统由北京勤云科技发展有限公司设计